Cigarette smoking increases plasma levels of IL-6 and TNF-α

Authors

  • Shireen A. Al-tameemi Department of Chemistry, College of Science, University of Diyala, Baqubah 32001, Iraq
  • Najwa J. Hameed Department of Chemistry, College of Science, University of Diyala, Baqubah 32001, Iraq
  • Karina B. Gomes Department of Clinical and Toxicological Analyses, School of Pharmacy, Federal University of Minas Gerais, Minas Gerais, Brazil
  • Hussein A. Abid Scientific Affairs and Cultural Relations Section, Al-Nahrain University, Jadiriyah 10070, Iraq

DOI:

https://doi.org/10.47419/bjbabs.v3i01.108

Keywords:

biomarkers, cytokines, inflammation, smoking

Abstract

Background and objective: Cigarette smoking is a leading cause of a wide range of critical health problems such as cancers, especially those related to the respiratory system. Although studies are continuing on the smoking-related inflammatory responses, limited reports are there to explore how such responses can be affected by the smoking intensity. Therefore, the current communication aimed to shed light on how smoking and smoking intensity can affect some inflammatory and anti-inflammatory biomarkers.

Methods: A total of 159 subjects (108 smokers and 51 non-smokers) were enrolled in this cross-sectional study. Their sociodemographic, smoking intensity and blood samples were obtained and processed using approved methodologies. The blood plasma samples were used to quantify interleukin 6 (IL-6), IL-10, tumor necrosis factor-alpha (TNF-α), C-reactive protein, D-dimer, and ferritin by using ELISA. The gained data was then analyzed using GraphPad Prism software to assess the variations.

Results: Both IL-6 and TNF-α are elevated markedly (p<0.001) in smoker subjects when compared with non-smoker ones (IL-6: 2.58±0.98 vs. 1.858±0.6256 pg/ml, TNF-α: 28.38±7.162 vs. 22.64±7.257 pg/ml). However, no significant differences were observed in other biomarkers comparing the groups, as well as no significant association was evidenced based on smoking intensity among smokers.

Conclusions: The findings might point to a relationship between smoking and the elevation of IL-6 and TNF-α levels in a cigarette dose-dependent manner.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

van der Vaart H, Postma DS, Timens W, ten Hacken NHT. Acute effects of cigarette smoke on inflammation and oxidative stress: a review. Thorax. 2004;59(8):713-721. doi.org/10.1136/thx.2003.012468 DOI: https://doi.org/10.1136/thx.2003.012468

Kuschner WG, D’Alessandro A, Wong H, Blanc PD. Dose-dependent cigarette smoking-related inflammatory responses in healthy adults. Eur Respir J. 1996;9(10):1989-1994. doi:10.1183/09031936.96.09101989 DOI: https://doi.org/10.1183/09031936.96.09101989

Morrison D, Rahman I, Lannan S, MacNee W. Epithelial permeability, inflammation, and oxidant stress in the air spaces of smokers. Am J Respir Crit Care Med. 1999;159(2):473-479. doi:10.1164/ajrccm.159.2.9804080 DOI: https://doi.org/10.1164/ajrccm.159.2.9804080

Janoff A, Raju L, Dearing R. Levels of elastase activity in bronchoalveolar lavage fluids of healthy smokers and nonsmokers. Am Rev Respir Dis. 1983;127(5):540-544. doi:10.1164/arrd.1983.127.5.540 DOI: https://doi.org/10.1164/arrd.1983.127.5.540

Hockertz S, Emmendörffer A, Scherer G et al. Acute effects of smoking and high experimental exposure to environmental tobacco smoke (ETS) on the immune system. Cell Biol Toxicol. 1994;10(3):177-190. doi:10.1007/BF00757561 DOI: https://doi.org/10.1007/BF00757561

Montuschi P, Collins J V., Ciabattoni G et al. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med. Published online 2000. doi:10.1164/ajrccm.162.3.2001063 DOI: https://doi.org/10.1164/ajrccm.162.3.2001063

Guatura SB, Martinez JA, Santos Bueno PC, Santos ML. Increased exhalation of hydrogen peroxide in healthy subjects following cigarette consumption. Sao Paulo Med J. 2000;118(4):93-98. doi:10.1590/s1516-31802000000400004 DOI: https://doi.org/10.1590/S1516-31802000000400004

Balint B, Donnelly LE, Hanazawa T, Kharitonov SA, Barnes PJ. Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke. Thorax. Published online 2001. doi:10.1136/thorax.56.6.456 DOI: https://doi.org/10.1136/thx.56.6.456

Abboud RT, Fera T, Johal S, Richter A, Gibson N. Effect of smoking on plasma neutrophil elastase levels. J Lab Clin Med. Published online 1986. doi:10.5555/uri:pii:0022214386901678

Drost EM, Selby C, Bridgeman MME, MacNee W. Decreased leukocyte deformability after acute cigarette smoking in humans. Am Rev Respir Dis. 1993;148(5):1277-1283. doi:10.1164/ajrccm/148.5.1277 DOI: https://doi.org/10.1164/ajrccm/148.5.1277

Churg A, Wang RD, Tai H et al. Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumor necrosis factor-alpha release. Am J Respir Crit Care Med. 2003;167(8):1083-1089. doi:10.1164/rccm.200212-1396OC DOI: https://doi.org/10.1164/rccm.200212-1396OC

Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO. The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. Br J Addict. 1991;86(9):1119-1127. doi:10.1111/j.1360-0443.1991.tb01879.x DOI: https://doi.org/10.1111/j.1360-0443.1991.tb01879.x

Pomerleau CS, Majchrzak MJ, Pomerleau OF. Nicotine dependence and the Fagerström Tolerance Questionnaire: a brief review. J Subst Abuse. 1989;1(4):471-477. doi:10.1016/s0899-3289(20)30011-0 DOI: https://doi.org/10.1016/S0899-3289(20)30011-0

Helmersson J, Larsson A, Vessby B, Basu S. Active smoking and a history of smoking are associated with enhanced prostaglandin F(2alpha), interleukin-6 and F2-isoprostane formation in elderly men. Atherosclerosis. 2005;181(1):201-207. doi:10.1016/j.atherosclerosis.2004.11.026 DOI: https://doi.org/10.1016/j.atherosclerosis.2004.11.026

Petrescu F, Voican SC, Silosi I. Tumor necrosis factor-alpha serum levels in healthy smokers and nonsmokers. Int J Chron Obstruct Pulmon Dis. 2010;5:217-222. doi:10.2147/copd.s8330 DOI: https://doi.org/10.2147/COPD.S8330

Vasudevan D, S S, Vaidyanathan K. Role of Nutraceuticals in Chemoresistance to Cancer. Elsevier; 2018. doi:10.1016/C2016-0-02042-9 DOI: https://doi.org/10.1016/C2016-0-02042-9

Dwivedi S, Goel A, Khattri S, Mandhani A, Sharma P, Pant KK. Tobacco exposure by various modes may alter proinflammatory (IL-12) and anti-inflammatory (IL-10) levels and affects the survival of prostate carcinoma patients: an explorative study in North Indian population. Biomed Res Int. 2014;2014:158530. doi:10.1155/2014/158530 DOI: https://doi.org/10.1155/2014/158530

Ohsawa M, Okayama A, Nakamura M et al. CRP levels are elevated in smokers but unrelated to the number of cigarettes and are decreased by long-term smoking cessation in male smokers. Prev Med (Baltim). 2005;41(2):651-656. doi:10.1016/j.ypmed.2005.02.002 DOI: https://doi.org/10.1016/j.ypmed.2005.02.002

Wannamethee SG, Lowe GDO, Shaper AG, Rumley A, Lennon L, Whincup PH. Associations between cigarette smoking, pipe/cigar smoking, and smoking cessation, and haemostatic and inflammatory markers for cardiovascular disease. Eur Heart J. 2005;26(17):1765-1773. doi:10.1093/eurheartj/ehi183 DOI: https://doi.org/10.1093/eurheartj/ehi183

Published

31-03-2022

Issue

Section

Short communications

Categories

How to Cite

Cigarette smoking increases plasma levels of IL-6 and TNF-α. (2022). Baghdad Journal of Biochemistry and Applied Biological Sciences, 3(01), 60-68. https://doi.org/10.47419/bjbabs.v3i01.108

##plugins.generic.badges.manager.settings.showBlockTitle##

Share