A brief review on the molecular biology of human adenoviruses


  • Buhari Suraka Department of Microbiology and Biotechnology, Faculty of Sciences, Federal University, Dutse, 720223, Nigeria
  • Umar Usman Department of Biology, School of Sciences, College of Education, Gumel, 732102, Nigeria
  • Aminu Tijjani Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Bayero University, Kano, 700241, Nigeria




capsid proteins, diarrhea, human adenoviruses, molecular biology, viral replication


Human adenoviruses infection causes diseases worldwide in all age groups and genders, which is associated with a wide range of diseases affecting the gastrointestinal tract, respiratory tract, urinary tract, and the eye, but they are often isolated from the pharynx and stool of asymptomatic children. However, in developing countries, diarrhea is a major cause of morbidity and mortality; and after rotaviruses, human adenoviruses are considered to be the second most important cause of viral infantile diarrhea. Also, human adenoviruses cause fatal acute respiratory distress syndrome in healthy adults and are especially fatal in infants and immune-compromised individuals. This review summarizes both classical and contemporary discoveries in the study of human adenoviruses at the molecular level, with particular emphasis on viral receptors, capsid proteins, nucleic acid, and genome properties as well as the molecular interactions governing the virion assembly. In this article, we provide insightful information concerning the molecular aspects of human adenoviruses. This would develop an understanding of the virus and serve as a powerful tool in identifying new approaches for the prevention and treatment of adenoviral infection.


Metrics Loading ...


Download data is not yet available.


A Dhingra, E Hage, T Ganzenmueller, et al. “Molecular evolution of human adenovirus (HAdV) species C”. Sci Rep 9(1) (2019), pp. 1039–1039. DOI: 10.1038/s41598-018-37249-4.

A Lenman et al. “Coagulation factor IX mediates serotype-specific binding of species A adenoviruses to host cells”. J Virol 85(24) (2011), pp. 13420–13431. DOI: 10.1128/JVI.06088-11.

A M Ismail et al. “Adenoviromics: Mining the human adenovirus species D genome”. Front Microbiol 9 (2018), pp. 2178–2178.

A Sauerbrei et al. “Sensitivity of human adenoviruses to different groups of chemical biocides”. J Hosp Infect 57(1) (2004), pp. 59–66. DOI: 10.1016/j.jhin.2004.01.022.

Al Qurashi et al. “Sequencing and phylogenetic analysis of the hexon, fiber, and penton regions of adenoviruses isolated from AIDS patients”. J Med Virol 84(8) (2012), pp. 1157–1165. DOI: 10.1002/jmv.23331.

B Ghebremedhin. “Human adenovirus: Viral pathogen with increasing importance”. Eur J Microbiol Immunol (Bp) 4(1) (2014), pp. 26–33. DOI: 10.1556/EuJMI.4.2014.1.2.

B J Crenshaw et al. “Perspective on adenoviruses: Epidemiology, pathogenicity, and gene therapy”. Biomedicines 7(3) (2019), pp. 61–61. DOI: 10.3390/biomedicines7030061.

C F Lanata, C L Fischer-Walker, and A C Olascoaga. “Global causes of diarrheal disease mortality in children <5 years of age: a systematic review”. PLoS One 8(9) (2013), e72788. DOI: 10.1371/journal.pone.0072788.

C M Robinson, G Singh, and J Y Lee. “Molecular evolution of human adenoviruses”. Sci Rep 3 (2013), pp. 1812–1812. DOI: 10.1038/srep01812.

C San Martín and M J Van Raaij. “The so far farthest reaches of the double jelly roll capsid protein fold”. Virol J 15(1) (2018), pp. 181–181. DOI: 10.1186/s12985-018-1097-1.

C T Garnett, G Talekar, and J A Mahr. “Latent species C adenoviruses in human tonsil tissues”. J Virol 83(6) (2009), pp. 2417–2428. DOI: 10.1128/JVI.02392-08.

D Assane, C Makhtar, D Abdoulaye, et al. “Viral and bacterial etiologies of acute respiratory infections among children under 5 years in Senegal”. Microbiol Insights 11 (2018), pp. 1178636118758651–1178636118758651. DOI: 10.1177/1178636118758651.

D Huang et al. “Molecular and epidemiological characterization of human adenoviruses infection among children with acute diarrhea in Shandong Province, China”. Virol J 18 (2021), p. 195. DOI: 10.1186/s12985-021-01666-1.

D Primo et al. “Surveillance and molecular characterization of human adenovirus in patients with acute gastroenteritis in the era of rotavirus vaccine”. J Clin Virol 109 (2018), pp. 35–40. DOI: 10.1016/j.jcv.2018.10.010.

D Seto et al. “Using the whole-genome sequence to characterize and name human adenoviruses”. J Virol 85(11) (2011), pp. 5701–5703. DOI: 10.1128/JVI.00354-11.

E Rodríguez, C Romero, and A Río. “Short-fiber protein of ad40 confers enteric tropism and protection against acidic gastrointestinal conditions”. Hum Gene Ther Methods 24(4) (2013), pp. 195–204.

G Schoehn et al. “Three-dimensional structure of canine adenovirus serotype 2 capsid”. J Virol 82(7) (2008), pp. 3192–3203. DOI: 10.1128/JVI.02393-07.

H N Prince and D L Prince. “Principles of viral control and transmission”. In: Disinfection, sterilization, and preservation. Ed. by S S Block SS. Philadelphia: Lea & Febiger, 2001, pp. 543–571.

H Wang, Z Y Li, Y Liu, et al. “Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14”. Nat Med 17(1) (2011), pp. 96–104. DOI: 10.1038/nm.2270.

J D Graci and C E Cameron. “Mechanisms of action of ribavirin against distinct viruses”. Rev Med Virol 16(1) (2006), pp. 37–48. DOI: 10.1002/rmv.483.

J Pérez-Vargas et al. “Isolation and characterization of the DNA and protein binding activities of adenovirus core protein V”. J Virol 88(16) (2014), pp. 9287–9296.

J R Radke, S L Yong, and J L Cook. “Low-level expression of the E1B 20-kilodalton protein by adenovirus 14p1 enhances viral immunopathogenesis”. J Virol 90(1) (2015), pp. 497–505. DOI: 10.1128/JVI.01790-15.

J S Chahal et al. “The repression domain of the E1B 55-kilodalton protein participates in countering interferon-induced inhibition of adenovirus replication”. J Virol 87(8) (2013), pp. 4432–4444. DOI: 10.1128/JVI.03387-12.

J Vellinga, S Van Der Heijdt, and R C Hoeben. “The adenovirus capsid: major progress in minor proteins”. J Gen Virol 86 (2005), pp. 1581–1588. DOI: 10.1099/vir.0.80877-0.

J Zivanov, T Nakane, and B O Forsberg. “New tools for automated high-resolution cryo-EM structure determination in RELION-3”. Elife 7 (2009). DOI: 10.7554/eLife.42166.

K A Karen and P Hearing. “Adenovirus core protein VII protects the viral genome from a DNA damage response at early times after infection”. J Virol 85(9) (2011), pp. 4135–4142. DOI: 10.1128/JVI.02540-10.

K Rafie et al. “The structure of enteric human adenovirus 41-A leading cause of diarrhea in children”. Sci Adv 7(2) (2021), eabe0974. DOI: 10.1126/sciadv.abe0974.

Kjda Excoffon. “The coxsackievirus and adenovirus receptor: virological and biological beauty”. FEBS Lett 594(12) (2020), pp. 1828–1837. DOI: 10.1002/1873-3468.13794.

Kundhavai Natchiar et al. “Revised crystal structure of human adenovirus reveals the limits on protein IX quasi-equivalence and on analyzing large macromolecular complexes”. J Mol Biol 430(21) (2018), pp. 4132–4141. DOI: 10.1016/j.jmb.2018.08.011.

L Deng, B D Griffin, Y Pei, et al. “Fowl aviadenovirus 9 dUTPase plays a role in regulation of the host immune response”. Viral Immunol 30(9) (2017), pp. 662–670. DOI: 10.1089/vim.2017.0068.

L Lu, H Zhong, and M Xu. “Molecular and epidemiological characterization of human adenovirus and classic human astrovirus in children with acute diarrhea in Shanghai”. BMC Infect Dis 21(1) (2021), pp. 713–713. DOI: 10.1186/s12879-021-06403-1.

Lynch Jp III and A E Kajon. “Adenovirus: Epidemiology, global spread of novel serotypes, and advances in treatment and prevention”. Semin Respir Crit Care Med 37(4) (2016), pp. 586–602. DOI: 10.1055/s-0036-1584923.

M Benevento et al. “Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics”. J Biol Chem 289(16) (2014), pp. 11421–11430. DOI: 10.1074/jbc.M113.537498.

M Benko et al. “Adenoviridae”. In: Virus Taxonomy. Eighth Report of the International Committee on the Taxonomy of Viruses. Elsevier Academic Press, 2005, pp. 213–228.

M Bottermann, H Lode, and R Watkinson. “Antibody-antigen kinetics constrain intracellular humoral immunity”. Sci Rep 6 (2016), pp. 37457–37457. DOI: 10.1038/srep37457.

M Echavarría. “Adenoviruses in immunocompromised hosts”. Clin Microbiol Rev 21(4) (2008), pp. 704–715. DOI: 10.1128/CMR.00052-07.

M H Afrad, T Avzun, and J Haque. “Detection of enteric- and non-enteric adenoviruses in gastroenteritis patients”. J Med Virol 90(4) (2012), pp. 677–684. DOI: 10.1002/jmv.25008.

M Hernando-Pérez, N Martín-González, and M Pérez-Illana. “Dynamic competition for hexon binding between core protein VII and lytic protein VI promotes adenovirus maturation and entry”. Proc Natl Acad Sci 117(24) (2020), pp. 13699–13707. DOI: 10.1073/pnas.1920896117.

M Schmid, P Ernst, A Honegger, et al. “Adenoviral vector with shield and adapter increases tumor specificity and escapes liver and immune control”. Nat Commun 9(1) (2018), pp. 450–450. DOI: 10.1038/s41467-017-02707-6.

Mmy Waye and C W Sing. “Anti-viral drugs for human adenoviruses”. Pharmaceuticals 3 (2010), pp. 3343–54. DOI: 10.3390/ph3103343.

N Arnberg et al. “Adenovirus type 37 uses sialic acid as a cellular receptor”. J Virol 74(1) (2000), pp. 42–48.

N R Aggarwal et al. “Diverse macrophage populations mediate acute lung inflammation and resolution”. Am J Physiol Lung Cell Mol Physiol 306(8) (2014), pp. 709–725. DOI: 10.1152/ajplung.00341.2013.

N Sharif et al. “Molecular and epidemiological trends of human bocavirus and adenovirus in children with acute gastroenteritis in Bangladesh during 2015 to 2019”. J Med Virol 92 (2020), pp. 3194–3201. DOI: 10.1002/jmv.25812.

N Supriya. Life cycle of adenovirus. 2022. URL: https://biologyreader.com/life-cycle-of-adenovirus.html (visited on 09/05/2022).

N Wolfrum and U F Greber. “Adenovirus signalling in entry”. Cell Microbiol 15(1) (2013), pp. 53–62. DOI: 10.1111/cmi.12053.

O Ruuskanen et al. “Adenoviruses”. In: Clinical Virology. Ed. by D.D. Richman, R. J. Whitley, and F. J. Hayden. Washington, DC: American Society for Microbiology, 2009, pp. 559–574. URL: https://doi.org/10.1128/9781555819439.ch27.

P Hidalgo et al. “The biology of the adenovirus E1B 55K protein”. FEBS Lett 593(24) (2019), pp. 3504–3517. DOI: 10.1002/1873-3468.13694.

P R Kinchington et al. “Sequence changes in the human adenovirus type 5 DNA polymerase associated with resistance to the broad spectrum antiviral cidofovir”. Antiviral Res 56(1) (2002), pp. 73–84. DOI: 10.1016/s0166-3542(02)00098-0.

P Wutzler and A Sauerbrei. “Virucidal efficacy of a combination of 0.2% peracetic acid and 80% (v/v) ethanol (PAA-ethanol) as a potential hand disinfectant”. J Hosp Infect 46(4) (2000), pp. 304–308. DOI: 10.1053/jhin.2000.0850.

R J Allen and A P Byrnes. “Interaction of adenovirus with antibodies, complement, and coagulation factors”. FEBS Lett 593(24) (2019), pp. 3449–3460. DOI: 10.1002/1873-3468.13649.

Rowe Wp et al. “Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture”. Proc Soc Exp Biol Med 84(3) (1953), pp. 570–573. DOI: 10.3181/00379727-84-20714.

S Atasheva, J Yao, and D M Shayakhmetov. “Innate immunity to adenovirus: lessons from mice”. FEBS Lett 593(24) (2019), pp. 3461–3483. DOI: 10.1002/1873-3468.13696.

S K Kuss, G T Best, C A Etheredge, et al. “Intestinal microbiota promote enteric virus replication and systemic pathogenesis”. Science 334(6053) (2011), pp. 249–252. DOI: 10.1126/science.1211057.

S Kenmoe et al. “Molecular characterization of human adenovirus associated with acute respiratory infections in Cameroon from 2011 to 2014”. Virol J 15(1) (2018), pp. 153–153. DOI: 10.1186/s12985-018-1064-x.

S Kumar et al. “Molecular evolutionary genetics analysis across computing platforms”. Mol Biol Evol 35(6) (2018), pp. 1547–1549. DOI: 10.1093/molbev/msy096.

S M Gregory, S A Nazir, and J P Metcalf. “Implications of the innate immune response to adenovirus and adenoviral vectors”. Future Virol 6(3) (2011), pp. 357–374. DOI: 10.2217/fvl.11.6.

S Y Sohn and P Hearing. “Adenovirus sequesters phosphorylated STAT1 at viral replication centers and inhibits STAT dephosphorylation”. J Virol 85(15) (2011), pp. 7555–7562. DOI: 10.1128/JVI.00513-11.

S. Jane Flint and Glen R. Nemerow. “Adenovirus composition, structure, and biophysical properties”. In: Human adenoviruses: from villains to vectors. Vol. 2. 2017, pp. 15–41.

T K Leung and M Brown. “Block in entry of enteric adenovirus type 41 in HEK293 cells”. Virus Res 156(1-2) (2011), pp. 54–63. DOI: 10.1016/j.virusres.2010.12.018.

T Lion. “Adenovirus infections in immunocompetent and immunocompromised patients”. Clin Microbiol Rev 27(3) (2014), pp. 441–462. DOI: 10.1128/CMR.00116-13.

T Walls, A G Shankar, and D Shingadia. “Adenovirus: an increasingly important pathogenin paediatric bone marrow transplant patients”. Lancet Infect Dis 3(2) (2003), pp. 79–86. DOI: 10.1016/s1473-3099(03)00515-2.

U F Greber. “Virus and host mechanics support membrane penetration and cell entry”. J Virol 90(8) (2016), pp. 3802–3805. DOI: 10.1128/JVI.02568-15.

V Graziano, G Luo, and P C Blainey. “Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: II. adenovirus proteinase is activated in an unusual one-dimensional biochemical reaction”. J Biol Chem 288(3) (2013), pp. 2068–2080. DOI: 10.1074/jbc.M112.407312.

V K Murali et al. “Adenovirus death protein (ADP) is required for lytic infection of human lymphocytes”. J Virol 88(2) (2013), pp. 3911668–3911668. DOI: 10.1128/JVI.01675-13.

V S Reddy et al. “Crystal structure of human adenovirus at 3.5 A resolution”. Science 329(5995) (2010), pp. 1071–1075. DOI: 10.1126/science.1187292.

V S Reddy. “The role of hexon protein as a molecular mold in patterning the protein IX organization in human adenoviruses”. J Mol Biol 429(18) (2017), pp. 2747–2751. DOI: 10.1016/j.jmb.2017.06.025.

W Kamel et al. “The adenovirus VA RNA-derived miRNAs are not essential for lytic virus growth in tissue culture cells”. Nucleic Acids Res 41(9) (2013), pp. 4802–4812. DOI: 10.1093/nar/gkt172.

W Mangel, W Mcgrath, K Xiong, et al. “Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA”. Nat Commun 7 (2016), pp. 10202–10202. DOI: 10.1038/ncomms10202.

W S Wold and K Toth. “New drug on the horizon for treating adenovirus”. Expert Opin Pharmacother 16(14) (2015), pp. 2095–2099. DOI: 10.1517/14656566.2015.1083975.

X Dai et al. “Atomic structures of minor proteins VI and VII in human adenovirus”. J Virol 91(24) (2017), pp. 850–867. DOI: 10.1128/JVI.00850-17.

X Tian et al. “Seroprevalence of neutralizing antibodies against six human adenovirus types indicates the low level of herd immunity in young children from Guangzhou, China”. Virol Sin 36(3) (2021), pp. 373–381. DOI: 10.1007/s12250-020-00307-1.

X Yu, D Veesler, M G Campbell, et al. “Cryo-EM structure of human adenovirus D26 reveals the conservation of structural organization among human adenoviruses”. Sci Adv 3(5) (2017). DOI: 10.1126/sciadv.1602670.

Y Furuse, D A Ornelles, and B R Cullen. “Persistently adenovirus-infected lymphoid cells express microRNAs derived from the viral VAI and especially VAII RNA”. Virology 447(1-2) (2013), pp. 140–145. DOI: 10.1016/j.virol.2013.08.024.

Y Zhang et al. “Modeling adenovirus latency in human lymphocyte cell lines”. J Virol 84(17) (2010), pp. 8799–8810. DOI: 10.1128/JVI.00562-10.




How to Cite

A brief review on the molecular biology of human adenoviruses. (2022). Baghdad Journal of Biochemistry and Applied Biological Sciences, 3(03), 166-182. https://doi.org/10.47419/bjbabs.v3i03.146

Similar Articles

1-10 of 30

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>