Pharmacological and therapeutic potential of ginger in the management of neurodegenerative disorders

Authors

  • Peace Olajide Department of Natural Sciences, Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
  • Babatunde Oluwafemi Adetuyi Department of Natural Sciences, Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.

DOI:

https://doi.org/10.47419/bjbabs.v4i04.169

Keywords:

ginger, neurodegenerative diseases, gingerol, antioxidant, anti-inflammation

Abstract

Secondary metabolites in ginger include 6-gingerol, 6-shogaol, 10-gingerol, gingerdiones, gingerdiols, paradols, 6-dehydrogingerols, 5-acetoxy-6- gingerol, 3,5-diacetoxy-6-gingerdiol, and 12-gingerol, all of which account for ginger's well-known pharmacological actions. Six-shogaol and six-gingerol are two of the most important active ingredients. There is experimental evidence to back ginger's medicinal properties, such as its antioxidant and anti-inflammatory activities. In contrast, ginger's purported neuroprotective advantage is a niche bioactivity with limited study. Increasing oxidative stress, neuroinflammation, and protein misfolding are common neuropathological characteristics of neurodegenerative disorders (NDs), which have become more common as life expectancy has increased. Ginger may be a potential for treating NDs because its phytochemicals target distinct ligand sites, as shown by their structure-activity relationships. Bioactive substances found there may help relieve neurological problems and pathological disorders by affecting markers which express apoptosis or sustenance. The cognitive-enhancing properties of ginger may be explained by its effects on the monoamine and cholinergic systems in various brain areas. In addition, ginger reduces the generation of inflammatory associated components. The current review intends to describe the impacts of ginger in the management of significant neurological conditions such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

Abd-Allah GA, El-Bakry KA, Bahnasawy MH, El-Khodary ER. Protective effects of curcumin and ginger on liver cirrhosis induced by carbon tetrachloride in rats. International Journal of Pharmacology. 2016;12:361-369

Abolaji AO, Ojo M, Afolabi TT, Arowoogun MD, Nwawolor D, Farombi EO. Protective properties of 6-gingerol-rich fraction from zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Chem Biol Interact. (2017) 270:15–23. doi: 10.1016/j.cbi.2017.03.017

AbuZahra, H.M., Rajendran, P., and Ismail, M.B. (2021). Zerumbone Exhibit Protective Effect against Zearalenone In-Duced Toxicity via Ameliorating Inflammation and Oxidative Stress Induced Apoptosis. Antioxidants 10(10): 1593.

Adeleke, D. A., Olajide, P. A., Omowumi, O. S., Okunlola, D. D., Taiwo, A. M., & Adetuyi, B. O. (2022). Effect of Monosodium Glutamate on the Body System. World News of Natural Sciences, 44, 1-23.

Adetuyi B.O, Oluwole E.O Dairo J.O (2015). Chemoprotective Potential of Ethanol Extract of Ganoderma Lucidum on Liver and Kidney Parameters in Plasmodium Beghei-Induced Mice, International Journal of Chemistry and Chemical Processes (IJCC). Vol 1(8).:29-36

Adetuyi, B. O., Adebayo, P. F., Olajide, P. A., Atanda, O. O., & Oloke, J. K. (2022). Involvement of Free Radicals in the Ageing of Cutaneous Membrane. World News of Natural Sciences, 43, 11-37.

Adetuyi, B. O., Adebisi, O. A., Adetuyi, O. A., Ogunlana, O. O., Toloyai, P. E., Egbuna, C., ... & Patrick-Iwuanyanwu, K. C. (2022). Ficus exasperata Attenuates Acetaminophen-Induced Hepatic Damage via NF-κB Signaling Mechanism in Experimental Rat Model. BioMed Research International, 2022.

Adetuyi, B. O., Adebisi, O. A., Awoyelu, E. H., Adetuyi, O. A., & Ogunlana, O. O. (2020). Phytochemical and Toxicological effect of Ethanol extract of Heliotropium indicum on Liver of Male Albino Rats. Letters in Applied NanoBioscience, 10(2), 2085-2095.

Adetuyi, B. O., Dairo, J. O., & Didunyemi, O. M. (2015). Anti-Hyperglycemic Potency of Jatropha Gossypiifolia in Alloxan Induced Diabetes. Biochem Pharmacol (Los Angel), 4(193), 2167-0501.

Adetuyi, B. O., Odine, G. O., Olajide, P. A., Adetuyi, O. A., Atanda, O. O., & Oloke, J. K. (2022). Nutraceuticals: role in metabolic disease, prevention and treatment. World News of Natural Sciences, 42, 1-27.

Adetuyi, B. O., Ogundipe, A. E., Ogunlana, O. O., Egbuna, C., Estella, O. U., Mishra, A. P., ... & Achar, R. R. (2022). Banana Peel as a Source of Nutraceuticals. In Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals (pp. 243-250). Springer, Cham.

Adetuyi, B. O., Olajide, P. A., Awoyelu, E. H., Adetuyi, O. A., Adebisi, O. A., & Oloke, J. K. (2020). Epidemiology and treatment options for COVID-19: a review. African journal of reproductive health, 24(2), 142-153.

Adetuyi, B. O., Olajide, P. A., Oluwatosin, A., & Oloke, J. K. (2022). Preventive Phytochemicals of Cancer as Speed Breakers in Inflammatory Signaling. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 8(1), 30-61.

Adetuyi, B. O., Olajide, P. A., Omowumi, O. S., Odine, G. O., Okunlola, D. D., Taiwo, A. M., & Opayinka, O. D. (2022). Blockage of Alzheimer’s gene: Breakthrough effect of Apolipoprotein E4. African Journal of Advanced Pure and Applied Sciences (AJAPAS), 26-33.

Adetuyi, B. O., Omolabi, F. K., Olajide, P. A., & Oloke, J. K. (2021). Pharmacological, biochemical and therapeutic potential of milk thistle (silymarin): a review. World News of Natural Sciences, 37, 75-91.

Adetuyi, B. O., Toloyai, P. E. Y., Ojugbeli, E. T., Oyebanjo, O. T., Adetuyi, O. A., Uche, C. Z., ... & Egbuna, C. (2021). Neurorestorative Roles of Microgliosis and Astrogliosis in Neuroinflammation and Neurodegeneration. Scicom Journal of Medical and Applied Medical Sciences, 1(1), 1-5.

Adetuyi, B., Dairo, J., & Oluwole, E. (2015). Biochemical Effects of Shea Butter and Groundnut Oils on White Albino Rats. International Journal of Chemistry and Chemical Processes, 1(8), 1-17.

Adetuyi, B.O., Okeowo, T.O., Adetuyi, O. A., Adebisi, O. A., Ogunlana, O. O., Oretade, J.O., & Batiha, G. E. S. (2020). Ganoderma lucidum from red mushroom attenuates formaldehyde-induced liver damage in experimental male rat model. Biology, 9(10), 313.

Adewale, G. G., Olajide, P. A., Omowumi, O. S., Okunlola, D. D., Taiwo, A. M., & Adetuyi, B. O. (2022). Toxicological Significance of the Occurrence of Selenium in Foods. World News of Natural Sciences, 44, 63-88.

Ajith TA, Hema U, Aswathy MS. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status. Food and Chemical Toxicology. 2007;45:2267-2272

Akinyemi AJ, Ademiluyi AO, Oboh G. Aqueous extracts of two varieties of ginger (Zingiber officinale) inhibit angiotensin I-converting enzyme, iron(II), and sodium nitroprusside-induced lipid peroxidation in the rat heart in vitro. J Med Food. (2013) 16:641–6. doi: 10.1089/jmf.2012.0022

Anh NH, Kim SJ, Long NP, Min JE, Yoon YC, Lee EG, et al. Ginger on human health: a comprehensive systematic review of 109 randomized controlled trials. Nutrients. (2020) 12:157. doi: 10.3390/nu12010157

Arablou T, Aryaeian N, Valizadeh M, Sharifi F, Hosseini A, Djalali M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int J Food Sci Nutr. (2014) 65:515–20. doi: 10.3109/09637486.2014.880671

Asadi-Samani M, Rafieian-Kopaei M, Azimi N. Gundelia: a systematic review of medicinal and molecular perspective. Pakistan J Biol Sci PJBS. (2013) 16:1238–47. doi: 10.3923/pjbs.2013.1238.1247

Asamenew G, Kim H-W, Lee M-K, Lee S-H, Kim YJ, Cha Y-S, et al. Characterization of phenolic compounds from normal ginger (Zingiber officinale Rosc) and black ginger (kaempferia parviflora wall) using UPLC–DAD–QToF–MS. Eur Food Res Technol. (2019) 245:653–65. doi: 10.1007/s00217-018-3188-z

Asnaashari S, Dastmalchi S, Javadzadeh Y. Gastroprotective effects of herbal medicines (roots). International Journal of Food Properties. 2018;21(1):902-920

Awoyelu, E. H., Oladipo, E. K., Adetuyi, B. O., Senbadejo, T. Y., Oyawoye, O. M., & Oloke, J. K. (2020). Phyloevolutionary analysis of SARS-CoV-2 in Nigeria. New Microbes and New Infections, 36, 100717.

Azimi P, Ghiasvand R, Feizi A, Hariri M, Abbasi B. Effects of cinnamon, cardamom, saffron, and ginger consumption on markers of glycemic control, lipid profile, oxidative stress, and inflammation in type 2 diabetes patients. Rev Diabet Stud. (2014) 11:258–66. doi: 10.1900/RDS.2014.11.258

Baliga, M.S., Haniadka, R., Pereira, M.M., D’Souza, J.J., Pallaty, P.L., Bhat, H.P., and Popuri, S. (2011). Update on the chemopreventive effects of ginger and its phytochemicals. Crit. Rev. Food Sci. Nutr. 51(6): 499–523.

Balogun FO, Ashafa AOT. Protective action of aqueous leaf extract of Gazania krebsiana (Less.) ‘Asteraceae’ antagonizes isoproterenol-triggered myocardial infarction in Rattus norvegicus. Comparative Clinical Pathology. 2018;27:461-470

Bashir, N., Ahmad, S.B., Rehman, M.U., Muzamil, S., Bhat, R.R., Mir, M.U.R., Shazly, G.A., Ibrahim, M.A., Elossaily, G.M., Sherif, A.Y., and Kazi, M. (2021). Zingerone (4-(four-hydroxy-3-methylphenyl) butane-two-1) modulates adjuvant-induced rheumatoid arthritis by regulating inflammatory cytokines and antioxidants. Redox Rep. 26(1): 62–7

Batiha, G.E., Awad, D.A., Algamma, A.M., Nyamota, R., Wahed, M.I., Shah, M.A., Amin, M.N., Adetuyi, B.O., Hetta, H.F., Cruz-Marins, N., Koirala, N., Ghosh, A., & Sabatier, J-M. (2021). Diary-derived and Egg White Proteins in Enhancing Immune System against COVID-19 Frontiers in Nutritionr. (Nutritional Immunology) 8:629440 doi:10.3389/fnut.2021629440.

Bischoff-Kont, I., and Fürst, R. (2021). Benefits of ginger and its constituent 6-shogaol in inhibiting inflammatory processes. Pharmaceuticals 14(6): 571.

Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology. (2014) 83:1022–4. doi: 10.1212/WNL.0000000000000768

Chen, H., Lv, L., Soroka, D., Warin, R.F., Parks, T.A., Hu, Y., Zhu, Y., Chen, X., and Sang, S. (2012). Metabolism of [6]-shogaol in mice and in cancer cells. Drug Metab. Dispos. 40(4): 742–753

Choi JG, Kim SY, Jeong M, Oh MS. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacol Ther. (2018) 182:56–69. doi: 10.1016/j.pharmthera.2017.08.010

Deng G-F, Lin X, Xu X-R, Gao L-L, Xie J-F, Li H-B. Antioxidant capacities and total phenolic contents of 56 vegetables. J Funct Foods. (2013) 5:260–6. doi: 10.1016/j.jff.2012.10.015

Didunyemi, M. O., Adetuyi, B. O., & Oyebanjo, O. O. (2019). Morinda lucida attenuates acetaminophen-induced oxidative damage and hepatotoxicity in rats. Journal of Biomedical Sciences, 8(2), 0-0.

Didunyemi, M., Adetuyi, B., & Oyewale, I. (2020). Inhibition Of Lipid Peroxidation And In-Vitro Antioxidant Capacity Of Aqueous, Acetone And Methanol Leaf Extracts Of Green And Red Acalypha wilkesiana Muell Arg. Int J Biol Med Res, 11(3), 7089-7094.

Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol. (2010) 127:515–20. doi: 10.1016/j.jep.2009.10.004

Duke JA. Handbook of Medicinal Herbs. Maryland, USA: CRC Press; 2002

Dworsky-Fried Z, Chadwick CI, Kerr BJ, Taylor AMW. Multiple sclerosis and the endogenous opioid system. Front Neurosci. (2021) 15:741503. doi: 10.3389/fnins.2021.741503

El-Akabawy G, El-Kholy W. Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats. Annals of Anatomy. 2014;196(2-3):119-128

Elufioye TO, Berida TI, Habtemariam S. Plants-derived neuroprotective agents: Cutting the cycle of cell death through multiple mechanisms. Evidence-based Complementary and Alternative Medicine. 2017;2017:3574012. DOI: 10.1155/2017/3574012

Gessner A, König J, Fromm MF. Clinical aspects of transportermediated drug-drug interactions. Clin Pharmacol Ther. (2019) 105:1386–94. doi: 10.1002/cpt.1360

Ghasemian M, Owlia S, Owlia MB. Review of anti-inflammatory herbal medicines. Advances in Pharmacological Sciences. 2016;2016:9130979. DOI: 10.1155/2016/9130979

Ghayur MN, Anwarul HG, Afridi MB, Houghton PJ. Cardiovascular effects of ginger aqueous extract and its phenolic constituents are mediated through multiple pathways. Vascular Pharmacology. 2005;43(4):234-241

Gilmour H, Ramage-Morin PL, Wong SL. Multiple sclerosis: PREVALENCE and impact. Heal reports. (2018) 29:3–8.

Glatigny S, Bettelli E. Experimental autoimmune encephalomyelitis (EAE) as Animal models of multiple sclerosis (MS). Cold Spring Harb Perspect Med. (2018) 8:28977. doi: 10.1101/cshperspect.a028977

Greenwell M, Rahman PKSM. Medicinal plants: Their use in anticancer treatment. International Journal of Pharmaceutical Sciences and Research. 2015;6(10):4103-4112. DOI: 10.13040/ IJPSR.0975-8232.6(10).4103-12

Grzanna R, Phan P, Polotsky A, Lindmark L, Frondoza CG. Ginger extract inhibits beta-amyloid peptide-induced cytokine and chemokine expression in cultured THP-1 monocytes. J Altern Complement Med. (2004) 10:1009–13. doi: 10.1089/acm.2004.10.1009

Ha SK, Moon E, Ju MS, Kim DH, Ryu JH, Oh MS, et al. 6-Shogaol, a ginger product, modulates neuroinflammation: A new approach to neuroprotection. Neuropharmacology. 2012;63(2):211-223

Hattori, H., Mori, T., Shibata, T., Kita, M., and Mitsunaga, T. (2021). 6-Paradol Acts as a Potential Anti-obesity Vanilloid from Grains of Paradise. Mol. Nutr. Food Res. 65(16): 2100185.

He S-M, Chan E, Zhou S-F, ADME. properties of herbal medicines in humans: evidence, challenges and strategies. Curr Pharm Des. (2011) 17:357– 407. doi: 10.2174/138161211795164194

Hosseinzadeh A, Bahrampour Juybari K, Fatemi MJ, Kamarul T, Bagheri A, Tekiyehmaroof N, et al. Protective effect of ginger (zingiber officinale roscoe) extract against oxidative stress and mitochondrial apoptosis induced by interleukin-1β in cultured chondrocytes. Cells Tissues Organs. (2017) 204:241–50. doi: 10.1159/000479789

Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. (2019) 15:565–81. doi: 10.1038/s41582-019-0244-7

Hussein UK, Hassan NE-HY, Elhalwagy MEA, Zaki AR, Abubakr HO, Nagulapalli Venkata KC, et al. Ginger and propolis exert neuroprotective effects against monosodium glutamate-induced neurotoxicity in rats. Molecules. (2017) 22:1928. doi: 10.3390/molecules22111928

Jafarzadeh A, Ahangar-Parvin R, Nemat M, Taghipour Z, Shamsizadeh A, Ayoobi F, et al. Ginger extract modulates the expression of IL-12 and TGFβ in the central nervous system and serum of mice with experimental autoimmune encephalomyelitis. Avicenna J phytomedicine. (2017) 7:54–65.

Jafarzadeh A, Arabi Z, Ahangar-Parvin R, Mohammadi-Kordkhayli M, Nemati M. Ginger extract modulates the expression of chemokines CCL20 and CCL22 and their receptors (CCR6 and CCR4) in the central nervous system of mice with experimental autoimmune encephalomyelitis. Drug Res. (2017) 67:632–9. doi: 10.1055/s-0043-113455

Jafarzadeh A, Ebrahimi HA, Bagherzadeh S, Zarkesh F, Iranmanesh F, Najafzadeh A, et al. Lower serum levels of Th2-related chemokine CCL22 in women patients with multiple sclerosis: a comparison between patients and healthy women. Inflammation. (2014) 37:604–10. doi: 10.1007/s10753-013-9775-z

Jafarzadeh A, Nemati M. Therapeutic potentials of ginger for treatment of Multiple sclerosis: a review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. J Neuroimmunol. (2018) 324:54–75. doi: 10.1016/j.jneuroim.2018.09.003

Jafarzadeh, A., Jafarzadeh, S., and Nemati, M. (2021). Therapeutic potential of ginger against COVID-19: Is there enough evidence? J. Tradit. Chin. Med. Sci. 8(4): 267–279

James-Okoro, P. P. O., Iheagwam, F. N., Sholeye, M. I., Umoren, I. A., Adetuyi, B. O., Ogundipe, A. E., ... & Ogunlana, O. O. (2021). Phytochemical and in vitro antioxidant assessment of Yoyo bitters. World News of Natural Sciences, 37, 1-17.

Karam A, Nadia A, Abd EF, Nemat A, Siham M. Protective effect of ginger (Zingiber officinale) on Alzheimer’s disease induced in rats. J Neuroinfect Dis. (2014) 5:2.

Karna P, Chagani S, Gundala SR, Rida PC, Asif G, Sharma V, et al. Benefits of whole ginger extract in prostate cancer. The British Journal of Nutrition. 2012;107(4):473-484

Khan M, Ullah N, Azhar M, Komal W, Muhammad W. A mini-review on the therapeutic potential of Zingiber officinale (ginger). Nat Prod An Indian J. (2019) 15:125.

Kim SO, Chun K-S, Kundu JK, Surh Y-J. Inhibitory effects of [6]- gingerol on PMA-induced COX-2 expression and activation of NFkappaB and p38 MAPK in mouse skin. Biofactors. (2004) 21:27–31. doi: 10.1002/biof.552210107

Kim, A., Gwon, M.H., Lee, W., Moon, H.R., and Yun, J.M. (2022). Zerumbone suppresses high glucose and LPS-induced inflammation in THP1-derived macrophages by inhibiting the NF-κB/TLR signaling pathway. Nutr. Res. 100: 58–69.

Kiran CR, Chakka AK, Amma KPP, Menon AN, Kumar MMS, Venugopalan V V. Influence of cultivar and maturity at harvest on the essential oil composition, oleoresin and [6]-gingerol contents in fresh ginger from northeast India. J Agric Food Chem. (2013) 61:4145–54. doi: 10.1021/jf400095y

Kubra, I.R., and Rao, L.J.M. (2012). An impression on current developments in the technology, chemistry, and biological activities of ginger (Zingiber officinale Roscoe). Crit. Rev. Food Sci. Nutr. 52(8): 651–688.

Kukula-Koch, W., Koch, W., Czernicka, L., Glowniak, K., Asakawa, Y., Umeyama, A., Marzec, Z., and Kuzuhara, T. (2018). MAO-A Inhibitory Potential of Terpene Constituents from Ginger Rhizomes–A Bioactivity Guided Fractionation. Molecules 23(6): 1301.

Kumara, M., Shylajab, M.R., Nazeemc, P.A., and Babu, T. (2017). 6-Gingerol is the most potent anticancerous compound in ginger (Zingiber officinale Rosc.). J. Dev. Drugs 6(1): 1–6.

Kuppusamy P, David RS, Raj P, Ilavenil S, Kaleeswaran B, Govindan N, et al. Evaluation of antihypercholesterolemic effect using Memecylon edule Roxb. ethanolic extract in cholesterol-induced Swiss albino mice. Journal of Acute Medicine. 2015;5:85-e91

Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol. (2017) 133:223–44. doi: 10.1007/s00401-016-1631-4

Li Y, Hong Y, Han Y, Wang Y, Xia L. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger. J Chromatogr B, Anal Technol Biomed life Sci. (2016) 1011:223–32. doi: 10.1016/j.jchromb.2016.01.009

Li, J., Wang, L., Sun, Y., Wang, Z., Qian, Y., Duraisamy, V., and Antary, T.M.A. (2022). Zerumbone-induced reactive oxygen species-mediated oxidative stress re-sensitizes breast cancer cells to paclitaxel. Biotechnol. Appl. Biochem.

Mann A. Biopotency role of culinary spices and herbs and their chemical constituents in health and commonly used spices in Nigerian dishes and snacks. African J Food Sci. (2011) 5:111–24. doi: 10.5897/AJFS.9000032

Mase, N., Kitagawa, N., and Takabe, K. (2010). Protection-, Salt-, and Metal-Free Syntheses of [n]-Shogaols by Use of Dimethylammonium Dimethyl Carbamate (DIMCARB) without Protecting Groups. Synlett 2010(01): 93–96.

Mazidi M, Gao H-K, Rezaie P, Ferns GA. The effect of ginger supplementation on serum C-reactive protein, lipid profile and glycaemia: a systematic review and meta-analysis. Food Nutr Res. (2016) 60:32613. doi: 10.3402/fnr.v60.32613

Mbaveng, A.T., and Kuete, V. (2017). Zingiber officinale. Medicinal Spices and Vegetables from Africa. Academic Press, pp. 627–639.

Medeiros MS, Schumacher-Schuh A, Cardoso AM, Bochi GV, Baldissarelli J, Kegler A, et al. Iron and oxidative stress in parkinson’s disease: an observational study of injury biomarkers. PLoS ONE. (2016) 11:e0146129. doi: 10.1371/journal.pone.0146129

Mele MA. Bioactive compounds and biological activity of ginger. Journal of Multidisciplinary Science. 2019;1(1):1-7

Melo A, Monteiro L, Lima RMF, Oliveira DMde, Cerqueira MDde, ElBachá RS. Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. Oxid Med Cell Longev. (2011) 2011:467180. doi: 10.1155/2011/467180

Mohammed, H.M. (2022). Zingerone ameliorates non-alcoholic fatty liver disease in rats by activating AMPK. J. Food Biochem. e14149.

Mohd Sahardi NFN, Makpol S. Ginger (Zingiber officinale Roscoe) in the prevention of ageing and degenerative diseases: review of current evidence. Evid Based Complement Alternat Med. (2019) 2019:5054395. doi: 10.1155/2019/5054395

Mohd Yusof YA. Gingerol and its role in chronic diseases. Adv Exp Med Biol. (2016) 929:177–207. doi: 10.1007/978-3-319-41342-6_8

Mojaverrostami S, Bojnordi MN, Ghasemi-Kasman M, Ebrahimzadeh MA, Hamidabadi HG. A review of herbal therapy in multiple sclerosis. Adv Pharm Bull. (2018) 8:575–90. doi: 10.15171/apb.2018.066

Moon, M., Kim, H.G., Choi, J.G., Oh, H., Lee, P.K., Ha, S.K., Kim, S.Y., Park, Y., Huh, Y., and Oh, M.S. (2014). 6-Shogaol, an active constituent of ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia. Biochem. Biophys. Res. Commun. 449(1): 8–13

Munir, N., Hasnain, M., Waqif, H., Adetuyi, B. O., Egbuna, C., Olisah, M. C., ... & El Sayed, A. M. A. (2022). Gelling Agents, Micro and Nanogels in Food System Applications. In Application of Nanotechnology in Food Science, Processing and Packaging (pp. 153-167). Springer, Cham.

Naderi Z, Mozaffari-Khosravi H, Dehghan A, Nadjarzadeh A, Huseini HF. Effect of ginger powder supplementation on nitric oxide and C-reactive protein in elderly knee osteoarthritis patients: a 12-week double-blind randomized placebo-controlled clinical trial. J Tradit Complement Med. (2016) 6:199–203. doi: 10.1016/j.jtcme.2014.12.007

Nammi S, Sreemantula S, Roufogalis BD. Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats. Basic & Clinical Pharmacology & Toxicology. 2009;104(5):366-373

Nazir, A., Itrat, N., Shahid, A., Mushtaq, Z., Abdulrahman, S. A., Egbuna, C., ... & Toloyai, P. E. Y. (2022). Orange Peel as Source of Nutraceuticals. In Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals (pp. 97-106). Springer, Cham.

Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D, et al. Past, present, and future of Parkinson’s disease: a special essay on the 200th anniversary of the shaking palsy. Mov Disord. (2017) 32:1264–310. doi: 10.1002/mds.27115

Ogunlana, O. O., Adetuyi, B. O., Esalomi, E. F., Rotimi, M. I., Popoola, J. O., Ogunlana, O. E., & Adetuyi, O. A. (2021). Antidiabetic and Antioxidant Activities of the Twigs of Andrograhis paniculata on Streptozotocin-Induced Diabetic Male Rats. BioChem, 1(3), 238-249.

Ogunlana, O. O., Adetuyi, B. O., Rotimi, M., Adeyemi, A., Akinyele, J., Ogunlana, O. E., ... & Batiha, G. E. S. (2021). Hypoglycemic and antioxidative activities of ethanol seed extract of Hunteria umbellate (Hallier F.) on streptozotocin-induced diabetic rats. Clinical Phytoscience, 7(1), 1-9.

Ogunlana, O. O., Babatunde, O. A., Tobi, S. A., Adegboye, B. E., Iheagwam, F. N., & Oluseyi, E. (2021). Ogunlana. Ruzu bitters ameliorates high–fat diet induced non-alcoholic fatty liver disease in male Wistar rats. Journal of Pharmacy and Pharmacognosy Research, 9(3), 251-260.

Ogunlana, O. O., Ogunlana, O. E., Adekunbi, T. S., Adetuyi, B. O., Adegboye, B. E., & Iheagwam, F. N. (2020). Anti-inflammatory Mechanism of Ruzu Bitters on Diet-Induced Nonalcoholic Fatty Liver Disease in Male Wistar Rats. Evidence-Based Complementary and Alternative Medicine, 2020.

Ogunlana, O. O., Ogunlana, O. E., Popoola, J. O., Adetuyi, B. O., Adeyemi, A. O., Adekunbi, T. S., ... & Keleko, A. A. TWIGS OF Andrographis paniculata (Burn. F) NEES attenuates carbon tetrachloride (CCl4-) induced liver damage in wistar albino rats.

Ojewole JA. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytotherapy Research. 2006;20(9):764-772

Olajide, P. A., Adetuyi, O. A., Omowumi, O. S., & Adetuyi, B. O. (2022). Anticancer and Antioxidant Phytochemicals as Speed Breakers in Inflammatory Signaling. World News of Natural Sciences, 44, 231-259.

Olajide, P. A., Omowumi, O. S., & Odine, G. O. (2022). Pathogenesis of Reactive Oxygen Species: A Review. World News of Natural Sciences, 44, 150-164.

Olajide, P. A., Omowumi, O. S., Okunlola, D. D., & Adetuyi, B. O. (2022). Deadly Pandemia: Monkeypox Disease, a Case Study. African Journal of Advanced Pure and Applied Sciences (AJAPAS), 34-37.

Park G, Kim HG, Ju MS, Ha SK, Park Y, Kim SY, et al. 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson’s disease models via anti-neuroinflammation. Acta Pharmacol Sin. (2013) 34:1131–9. doi: 10.1038/aps.2013.57

Parmar I, Rupasinghe HPV. Antioxidant capacity and anti-diabetic activity of wild berry stem infusions. European Journal of Medicinal Plants. 2015;8:11-28

Peng S, Yao J, Liu Y, Duan D, Zhang X, Fang J. Activation of Nrf2 target enzymes conferring protection against oxidative stress in PC12 cells by ginger principal constituent 6-shogaol. Food Funct. (2015) 6:2813–23. doi: 10.1039/C5FO00214A

Perez-Carmona N, Fernandez-Jover E, Sempere AP. [Epidemiology of multiple sclerosis in Spain]. Rev Neurol. (2019) 69:32–8.

Perfeito R, Cunha-Oliveira T, Rego AC. Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease– resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med. (2012) 53:1791–806. doi: 10.1016/j.freeradbiomed.2012.08.569

Petersen MJ, Bergien SO, Staerk D. A systematic review of possible interactions for herbal medicines and dietary supplements used concomitantly with disease-modifying or symptom-alleviating multiple sclerosis drugs. Phytother Res. (2021) 35:3610–31. doi: 10.1002/ptr.7050

Pfeiffer E, Heuschmid FF, Kranz S, Metzler M. Microsomal hydroxylation and glucuronidation of [6]-gingerol. J Agric Food Chem. (2006) 54:8769–74. doi: 10.1021/jf062235l

Phan PV, Sohrabi A, Polotsky A, Hungerford DS, Lindmark L, Frondoza CG. Ginger extract components suppress induction of chemokine expression in human synoviocytes. J Altern Complement Med. (2005) 11:149–54. doi: 10.1089/acm.2005.11.149

Pimentel C, Batista-Nascimento L, Rodrigues-Pousada C, Menezes RA. Oxidative stress in Alzheimer’s and Parkinson’s diseases: insights from the yeast saccharomyces cerevisiae. Oxid Med Cell Longev. (2012) 2012:132146. doi: 10.1155/2012/132146

Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. (2017) 38:592–607. doi: 10.1016/j.tips.2017.04.005

Rahman, H.S., Abdullah, R., Abdul, A.B., Allaudin, Z.N., Namvar, F., Othman, H.H., Yeap, S.K., and How, C.W. (2013). Zerumbone, a Natural Dietary Sesquiterpene from Zingiber Zerumbet for Leukaemia Therapy In Vitro. Open Conf. Proc. J. 4(1): 67.

Rahmani AH, Shabrmi FM, Aly SM. Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities. International Journal of Physiology, Pathophysiology and Pharmacology. 2014;6:125-136

Rani PM, Padmakumari KP, Sankarikutty B, Lijo Cherian O, Nisha VM, Raghu KG. Inhibitory potential of ginger extracts against enzymes linked to type 2 diabetes, inflammation and induced oxidative stress. International Journal of Food Sciences and Nutrition. 2011;62(2):106-110

Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Tonk S, et al. Protective effects of indian spice curcumin against amyloid-β in Alzheimer’s disease. J Alzheimers Dis. (2018) 61:843–66. doi: 10.3233/JAD-170512

Revol B, Gautier-Veyret E, Arrivé C, Fouilhé Sam-Laï N, McLeer-Florin A, Pluchart H, et al. Pharmacokinetic herb-drug interaction between ginger and crizotinib. British Journal of Clinical Pharmacology. 2019:1-2

Río J, Montalbán X. [Current description of multiple sclerosis]. Med Clin. (2014) 143:3–6.

Romero A, Forero M, Sequeda-Castañeda LG, Grismaldo A, Iglesias J, CelisZambrano CA, et al. Effect of ginger extract on membrane potential changes and AKT activation on a peroxide-induced oxidative stress cell model. J King Saud Univ. (2018) 30:263–9. doi: 10.1016/j.jksus.2017.09.015

Saenghong N, Wattanathorn J, Muchimapura S, Tongun T, Piyavhatkul N, Banchonglikitkul C, et al. Zingiber officinale improves cognitive function of the middle-aged healthy women. Evid Based Complement Alternat Med. (2012) 2012:383062. doi: 10.1155/2012/383062

Sang, S., Hong, J., Wu, H., Liu, J., Yang, C.S., Pan, M.H., Badmaev, V., and Ho, C.T. (2009). Increased growth inhibitory effects on human cancer cells and anti-inflammatory potency of shogaols from Zingiber officinale relative to gingerols. J. Agric. Food Chem. 57(22): 10645–10650

Sapkota A, Park SJ, Choi JW. Neuroprotective effects of 6-shogaol and its metabolite, 6-paradol, in a mouse model of multiple sclerosis. Biomol Ther. (2019) 27:152–9. doi: 10.4062/biomolther.2018.089

Sebiomo A, Awofodu AD, Awosanya AO, Awotona FE, Ajayi AJ. Comparative studies of antibacterial effect of some antibiotics and ginger (Zingiber officinale) on two pathogenic bacteria. Journal of Microbiology and Antimicrobials. 2011;3(1):18-22

Semwal RB, Semwal DK, Combrinck S, Viljoen AM. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry. (2015) 117:554–68. doi: 10.1016/j.phytochem.2015.07.012

Sharma JN, Srivastava KC, Gan EK. Suppressive effects of eugenol and ginger oil on arthritic rats. Pharmacology. 1994;49(5):314-318

Simon A, Darcsi A, Kéry Á, Riethmüller E. Blood-brain barrier permeability study of ginger constituents. J Pharm Biomed Anal. (2020) 177:112820. doi: 10.1016/j.jpba.2019.112820

Srinivasan, K. (2017). Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. PharmaNutrition 5(1): 18–28.

Tanaka K, Arita M, Sakurai H, Ono N, Tezuka Y. Analysis of chemical properties of edible and medicinal ginger by metabolomics approach. Biomed Res Int. (2015) 2015:671058. doi: 10.1155/2015/671058

Thomson M, Al-Qattan KK, Al-Sawan SM, Alnaqeeb MA, Khan I, Ali M. The use of ginger (Zingiber officinale Rosc) as a potential antiinflammatory and antithrombotic agent. Prostaglandins, Leukotrienes, and Essential Fatty Acids. 2002;67(6):475-478

Togar, B., Turkez, H., Tatar, A., Hacimuftuoglu, A., and Geyikoglu, F. (2015b). Cytotoxicity and genotoxicity of zingiberene on different neuron cell lines in vitro. Cytotechnology 67(6): 939–946.

Togar, B.A.S.A.K., Türkez, H., Stefano, A.D., Tatar, A., and Cetin, D.A.M.L.A. (2015a). Zingiberene attenuates hydrogen peroxide-induced toxicity in neuronal cells. Hum. Exp. Toxicol. 34(2): 135–144.

Valadez-Barba V, Juárez-Navarro K, Padilla-Camberos E, Díaz NF, GuerraMora JR, Díaz-Martínez NE. Parkinson’s disease: an update on preclinical studies of induced pluripotent stem cells. Neurologia. (2021) 11:S0213- 4853(21)00020-7. doi: 10.1016/j.nrl.2021.01.005. [Epub ahead of print].

van Breemen RB, Tao Y, Li W. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia. (2011) 82:38–43. doi: 10.1016/j.fitote.2010.09.004

Vemuri SK, Banala RR, Subbaiah GPV, Srivastava SK, Reddy AG, Malarvili T. Anti-cancer potential of a mix of natural extracts of turmeric, ginger and garlic: A cell-based study. Egyptian Journal of Basic and Applied Sciences. 2017;4(4):332-344

Vutyavanich T, Kraisarin T, Ruangsri RA. Ginger for nausea and vomiting in pregnancy: Randomized, double-masked, placebo-controlled trial. Obstetrics and Gynecology. 2001;97(4):577-582

Wang J, Ke W, Bao R, Hu X, Chen F. Beneficial effects of ginger zingiber officinale roscoe on obesity and metabolic syndrome: a review. Ann N Y Acad Sci. (2017) 1398:83–98. doi: 10.1111/nyas.13375

Wei, C.K., Tsai, Y.H., Korinek, M., Hung, P.H., El-Shazly, M., Cheng, Y.B., Wu, Y.C., Hsieh, T.J., and Chang, F.R. (2017). 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Blood Glucose in High-Fat Diet-Fed Mice. Int. J. Mol. Sci. 18(1): 168.

Xue, Y., Zhang, M., Liu, M., Liu, Y., Li, L., Han, X., Sun, Z., and Chu, L. (2021b). 8-Gingerol Ameliorates Myocardial Fibrosis by Attenuating Reactive Oxygen Species, Apoptosis, and Autophagy via the PI3K/Akt/mTOR Signaling Pathway. Front. Pharmacol. 12: 711701.

Yadav SK, Mindur JE, Ito K, Dhib-Jalbut S. Advances in the immunopathogenesis of multiple sclerosis. Curr Opin Neurol. (2015) 28:206–19. doi: 10.1097/WCO.0000000000000205

Zhang F, Zhang J-G, Yang W, Xu P, Xiao Y-L, Zhang H-T. 6-Gingerol attenuates LPS-induced neuroinflammation and cognitive impairment partially via suppressing astrocyte overactivation. Biomed Pharmacother. (2018) 107:1523–9. doi: 10.1016/j.biopha.2018.08.136

Zhu J, Chen H, Song Z, Wang X, Sun Z. Effects of ginger (Zingiber officinale Roscoe) on Type 2 diabetes mellitus and components of the metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. (2018) 2018:5692962. doi: 10.1155/2018/5692962

Published

14-05-2024

How to Cite

Pharmacological and therapeutic potential of ginger in the management of neurodegenerative disorders. (2024). Baghdad Journal of Biochemistry and Applied Biological Sciences, 4(4), 151-179. https://doi.org/10.47419/bjbabs.v4i04.169

##plugins.generic.badges.manager.settings.showBlockTitle##

Share